Preliminary communication

INTRAMOLECULAR CH. . .M INTERACTION: AB INITIO MO STUDY OF THE STRUCTURE OF $Ti(CH_3)(PH_3)_2(X)_2Y$

SHIGERU OBARA

Institute for Molecular Science, Myodaiji, Okazaki 444 (Japan) and Department of Chemistry, Kyoto University, Kyoto 606 (Japan)

NOBUAKI KOGA and KEIJI MOROKUMA*

Institute for Molecular Science, Myodaiji, Okazaki 444 (Japan)

(Received April 12th, 1984)

Summary

Ab initio MO calculations indicate that the nature of ligands X and Y and the PTiP angle in Ti(CH₃)(PH₃)₂(X)₂Y affect the distortion of its methyl group. For X = Cl, Y = Cl and angle PTiP 75°, the TiCH angle is found to be 100° and the H. . .Ti distance 2.51 Å. The methyl group is distorted, suggesting interaction between the methyl-CH bond and the metal atom. The origin of this distortion is attributed to direct interaction between the CH σ bond and an unoccupied Ti d orbital.

New evidence for direct interaction between CH bonds and metal centers has been rapidly accumulating, and unusually short CH. . .M distances have been found by X-ray and neutron diffraction studies [1]. The tendency of electron deficient metal atoms to satisfy the 18 electron rule has been suggested to be a driving force for this interaction. Recently we have reported the first theoretical evidence for CH. . . M activation found in ab initio molecular orbital calculations [2]. The fully optimized geometry of $Ti(C_2H_5)$ - $(PH_3)_2(Cl)_2(H)$ (I) has a small TiCC angle of 89°, a short TiH^{β} distance of 2.23 Å and a long CH^{β} bond of 1.11 Å. All these structural features, which are in good agreement with recent X-ray analysis data for $Ti(C_2H_5)(dmpe)$ -(Cl)₃ (II) (dmpe = dimethylphosphinoethane) [1b], except for the CH^{β} bond distances of which the X-ray values are unreliable, indicate that direct interaction exists between the CH^{β} bond and the titanium atom. The analysis of the effects of ligands X and Y in $Ti(C_2H_5)(PH_3)_2(X)_2(Y)$ has suggested that donative interaction from the CH^{β} bond to a vacant Ti d orbital is responsible for this distortion. We have also found a similarly distorted ethyl group in

three-coordinate $Pd(C_2H_5)(PH_3)(H)$. The potential energy surface of this compound leads the distorted structure smoothly to a transition state with a low barrier, and then to the β -elimination product $Pd(C_2H_4)(PH_3)(H)_2$ [3]. Contrary to the case of the Pd complex, the β -elimination reaction in I does not occur, probably because the product is seven-coordinated and unstable.

In this communication we present results of ab initio structural optimization of a related methyl compound, $Ti(CH_3)(PH_3)_2(Cl)_3$ (III), and show that its methyl group is distorted. The optimized structure of III, along with the X-ray results for $Ti(CH_3)(dmpe)(Cl)_3$ (IV) [1a], is shown in Fig. 1. The PTiP angle was fixed at 75°, to simulate the situation of IV. The $TiCH^1$ angle α is 99.6°, substantially smaller than either the other TiCH angles of 113.1° or the standard tetrahedral bond angle of 109.5°. The methyl group is thus substantially distorted. The angle β between the pseudo-three-fold axis of CH_3 and each CH bond is calculated to be 109°, indicating that the distortion is due to twisting of tetrahedral CH₃ as a whole and not due to deviation from the tetrahedral structure. It is also noteworthy that the TiCH¹ angle of 99.6°

Fig. 1. Optimized geometry of III with bond distances in Å and angles in degrees. The PTiP angle is assumed to be 75.0° similar to the observed angle in IV. Numbers in parentheses are X-ray results for IV.

TABLE 1

DEPENDENCE OF GEOMETRICAL PARAMETERS OF $Ti(CH_3)(PH_3)_2(X)_2 Y$ on LIGANDS X AND Y AND PTIP ANGLES

x	Y	Angle PTiP (°)	Angle TiCH ¹ (°)	β(°)	R—TiC (Å)	R—TiH ¹ (Å)	
н	н	91.6op a	108.3	110.6	2.135	2.685	
н	н	75.0as	107.1	110.5	2.122	2.657	
н	C 1	89.4op	106.2	110.6	2.135	2.653	
Cl	н	87.9op	102.6	109.8	2.094	2.566	
Cl	Cl	88.6op	100.2	109.2	2,102	2.533	
Cl	Cl	75.0as	99.6	108.9	2.085	2.510	

a op = optimized, as = assumed.

in III is larger and closer to normal than the TiCC angle of 89° in the ethyl analogue I and the Ti. . .H distance of 2.51 Å in III is longer than in I (2.23 Å). The CH¹ bond distance in III is only 0.01 Å longer than the CH² distance, while in I the difference in the β -CH bond distances was 0.03 Å. For these reasons it is suggested that the CH. . .M interaction in III is weaker than in I. The calculated structure of III (Fig. 1) agrees reasonably well with X-ray results of IV, except for the position of the hydrogen atoms, i.e., the TiCH bond angles. The X-ray TiCH¹ angle of 70° is much smaller than the theoretical value (100°). Considering an excellent agreement found between the calculated structure of I and the X-ray structure of II, we feel that the calculated positions of the hydrogen atoms in Fig. 1 are more reliable than the X-ray results and constitute a theoretical prediction for the structure of IV. A neutron diffraction experiment is awaited*.

The structural parameters of the CH₃ group were found to be sensitive to ligands X and Y as well as the PTiP angle, as shown in Table 1. Starting from nearly undistorted CH₃ for X = Y = H, the TiCH¹ angle α is reduced in the case of Y = Cl. The largest reduction of α occurs if X = Cl. The effects of X = Cl and Y = Cl are more or less additive as well as pinching the PTiP angle to 75°, the angle corresponding to the dmpe complex. Thus the predicted CH₃ distortion in III is the result of combined effects of chlorine ligands for X and Y and the small PTiP angle.

Though the electronic origin of this distortion is difficult to quantitize, the same factor that is responsible for the distortion of C_2H_5 in I, i.e., the donative interaction from the CH bond to an unoccupied Ti d orbital, appears to be

Fig. 2. Contour map of the LUMO of III at the optimized geometry of Fig. 1. The contours are ± 0.05 , ± 0.10 , ± 0.15 , ± 0.20 , ± 0.25 and ± 0.30 in a.u., and solid and dotted lines denote positive and negative values, respectively.

^{*}After submission of this manuscript, the molecular structure of IV was determined by a neutron diffraction analysis showing the TiCH¹ angle to be 93.7° and the Ti...H distance to be 2.45 Å [5], which agree well with our theoretical values.

operative. Figure 2 shows the LUMO for III at the geometry of Fig. 1. It is essentially the vacant Ti d_{xy} orbital with some contribution of s and p orbitals, and extends toward the (x+y) direction, the direction favorable for an overlap with the CH^1 bond. In fact, a small out-of-phase mix of the CH^1 bonding orbital in this LUMO must be noticed. This suggests that the CH¹ bond is stabilized by a small bonding (in-phase) mix of the Ti d_{xy} orbital. Replacement of H ligands with Cl lowers the d_{xy} level, and thus would increase the donative interaction. The reduction of the PTiP angle promotes further extension of the LUMO toward the CH^1 bond and would also increase the interaction. It is noteworthy that the TiC bond distance becomes shorter and therefore stronger if H is replaced by Cl, but CH₃ twist occurs despite stronger TiC bonding.

Theoretical methods

For Ti, the valence double ζ basis set by Topiol et al. [4a] is used together with core orbitals of MINI-4 [4b] by Tatewaki et al. The 3-21G basis set is used for C and H of CH₃, MINI-4 [4c] for Cl, and STO-2G for P and H of PH3. The energy gradient technique is used to optimize all the geometrical parameters. All the calculations reported here are based on the closed-shell Hartree-Fock method, and were carried out with the GAUSSIAN80 program at the IMS Computer Center.

References

- 1 (a) Z. Dawoodi, M.L.H. Green, V.S.B. Mtetwa and K. Prout, J. Chem. Soc. Chem. Commun., (1982) 1410:
 - (b) Z. Dawoodi, M.L.H. Green, V.S.B. Mtetwa and K. Prout, ibid., (1982) 802;
 - (c) J.H. Wengrovius, R.R. Schrock, M.R. Churchill and H.J. Wasserman, J. Am. Chem. Soc., 104 (1982) 1739;
 - (d) M. Brookhart, W. Lamanna and M.B. Humphrey, ibid., 104 (1982) 2117;
 - (e) R.R. Burch, E.L. Muetterties and V.W. Day, Organometallics, 1 (1982) 188;
 - (f) D.L. Grimmett, J.A. Labinger, J.N. Bonfiglio, S.T. Masuo, E. Shearin, J.S. Miller, J. Am. Chem. Soc., 104 (1982) 6858;
 - (g) W. Lamanna and M. Brookhart, ibid., 103 (1981) 989;
 - (h) O.W. Howarth, C.H. McAteer, P. Moore and G.E. Morris, J. Chem. Soc. Chem. Commun., (1981) 506:
 - (i) M. Green, N.C. Norman and A.G. Orpen, J. Am. Chem. Soc., 103 (1981) 1269;
 - (i) R.K. Brown, J.M. Williams, A.J. Schultz, G.D. Stucky, S.D. Ittel and R.L. Harlow, ibid., 102 (1980) 981;
 - (k) A.J. Schultz, R.K. Brown, J.M. Williams and R.R. Schrock, ibid., 101 (1979) 1593;
 - (1) M.R. Churchill, F.J. Hollander and R.R. Schrock, ibid., 100 (1978) 647;
 - (m) M.R. Churchill and F.J. Hollander, Inorg. Chem., 17 (1978) 1957;
 - (n) J.M. Williams, R.K. Brown, A.J. Schultz, G.D. Stucky and S.D. Ittel, J. Am. Chem. Soc., 100 (1978) 7407;
 - (o) R.B. Calvert and J.R. Shapley, ibid., 100 (1978) 7726;
 - (p) M. Brookhart, M.L.H. Green and R.B.A. Pardy, J. Chem. Soc. Chem. Commun., (1983) 691;
 - (q) For a review see: R.G. Teller and R. Ban, Structure and Bonding, 44 (1981) 1;
 - (r) For a recent review see: M. Brookhardt and M.L.H. Green, J. Organomet. Chem., 250 (1983) 395.
- 2 N. Koga, S. Obara and K. Morokuma, J. Am. Chem. Soc., in press.
- 3 N. Koga, S. Obara, K. Kitaura and K. Morokuma, to be published.
- 4 (a) S. Topiol, J.W. Moskowitz and C.F. Melius, J. Chem. Phys., 68 (1978) 2364; P.J. Hay, ibid., 66 (1977) 4377;
 - (b) H. Tatewaki, Y. Sakai and S. Huzinaga, J. Comput. Chem., 3 (1982) 278;
 (c) Y. Sakai, H. Tatewaki and S. Huzinaga, ibid., 2 (1981) 100.
- 5 J.M. Williams and M.L.H. Green, private communication.